

Product Description
 Product Description

16-bit $\mu \mathrm{P}$-based modular smart power transducer with an optional removable configuration key-pad or pro-
gramming software. The housing is for DIN-rail mounting and ensures a degree of protection (front) of IP 20.

- Class 0.5 (current/voltage)
- 16-bit μ P-based modular smart power transducer
- Measurements of: W, Wavg, VA, VAr, PF, Wh, VAh, VArh, Amax (among the phases), VL-L avg, VL1-N, VL2-N, VL3-N, Hz L1.
- TRMS measurement of distorted waves (voltage/current)
- All configuration functions selectable by an optional removable key-pad or programming software SptSoft
- Password protection of programming parameters
- Optional independent alarm setpoint
- Optional second analogue output ($20 \mathrm{mADC} / \pm 20 \mathrm{mADC}$ $\pm 10 \mathrm{mADC} / \pm 5 \mathrm{mADC} / 10 \mathrm{VDC} / \pm 5 \mathrm{VDC} / \pm 1 \mathrm{VDC}$)
- Optional serial RS 422/485 or RS232 output
- MODBUS, JBUS protocol.

Ordering Key

SPT-90AV51HXAIXXX
Model
Range code
System
Power supply
Auxiliary output
1st output/input
2nd output
Options

Input Specifications

Max. and min. indication	Max. 999, min. -999
Measurements	W, Wavg, VA, VAr, PF, Wh, VAh, VArh, Amax (among the phases), VL-L avg, VL1-N, VL2-N, VL3-N, Hz L1. TRMS measurement of a distorted wave voltage/current Coupling type : Direct Crest factor: ≥ 3
Ranges (impedances)	
AV1 (Un/ln):	$\begin{aligned} & 100 \mathrm{~V} / \sqrt{ } 3 / 100 \mathrm{~V}(>250 \mathrm{k} \Omega)- \\ & 1 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \end{aligned}$
AV3 (Un/ln):	$\begin{aligned} & 100 \mathrm{~V} / \sqrt{ } 3 / 100 \mathrm{~V}(>250 \mathrm{k} \Omega)- \\ & 5 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \end{aligned}$
AV4 (Un/ln):	$\begin{aligned} & 250 \mathrm{~V} / 433 \mathrm{~V}(>450 \mathrm{k} \Omega)- \\ & 1 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \end{aligned}$
AV5 (Un/ln):	$\begin{aligned} & 250 \mathrm{~V} / 433 \mathrm{~V}(>450 \mathrm{k} \Omega)- \\ & 5 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \end{aligned}$
AV7 (Un/ln):	$\begin{aligned} & 400 \mathrm{~V} / 690 \mathrm{~V}(>1 \mathrm{M} \Omega)- \\ & 5 \mathrm{AAC}(\leq 0.3 \mathrm{VA}) \end{aligned}$
Frequency range	48 to 62 Hz
Over-load protection	
Continuous: voltage/current	1.2 Un/ln
For 1 s Voltage:	2 Un
Current:	20 ln
Programming keypad (on request)	Removable type 3 keys: "S" for enter programming phase and password confirmation, "UP" and "DOWN" for value programming/function selection
Programming software	SptSoft Programming soft ware (on request) for windows 95/98 combined with an RS232 serial communication module.

Output Specifications

Analogue outputs	
Number of outputs	1 (standard) +1 (on request)
Accuracy	$\begin{aligned} & \pm 0.2 \% \text { f.s. (@ } 25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \text {, } \\ & \text { R.H. } \leq 60 \% \text {) } \end{aligned}$
Range	0 to 20 mADC ,
	$\pm 5 \mathrm{mADC}, \pm 10 \mathrm{mADC}$,
	$\begin{aligned} & \pm 20 \mathrm{mADC}, 10 \mathrm{VDC}, \pm 1 \mathrm{VDC}, \\ & \pm 5 \mathrm{VDC}, \pm 10 \mathrm{VDC} . \end{aligned}$
Scaling factor	Programmable within the
	whole range of retransmis-
	mission management of all
	values from: 0 to 20 mADC ,
	$\pm 5 \mathrm{mADC}, \pm 10 \mathrm{mADC}$,
	$\pm 20 \mathrm{mADC}, 0$ to10VDC,
	$\pm 1 \mathrm{VDC}, \pm 5 \mathrm{VDC}, \pm 10 \mathrm{VDC}$.
Response time	≤ 250 ms typical
	(filter excluded)
Temperature drift	$300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Load: 20 mA output	$\leq 600 \Omega$

	$\pm 20 \mathrm{~mA}$ output
	$\leq 550 \Omega$
	$\pm 5 \mathrm{~mA}$ output
10 V output	$\leq 1100 \Omega$
	$\leq 10 \mathrm{~V}$ output
$\pm 5 \mathrm{~V}$ output	$\geq 10 \mathrm{k} \Omega$
$\pm 1 \mathrm{~V}$ output	$\geq 10 \mathrm{k} \Omega$
	$\geq 10 \mathrm{k} \Omega$
Insulation	$\geq 10 \mathrm{k} \Omega$
	By means of optocouplers,
	$4000 \mathrm{~V}_{\text {ms }}$ output to
	measuring input
	$4000 \mathrm{~V}_{\text {ms }}$ output to
supply input	

Output Specifications (cont.)

Serial port (cont.)	
Data (bidirectional)	
Dynamic (reading only)	System variables:
	$P, P_{\text {AVG }}, S, Q, P F, V_{L-L}, f,$ energy and status of digital
	inputs, setpoint output and
	status of the energy over-
	flow bit,
	Single phase variables:
	$\begin{aligned} & \mathrm{P}_{\mathrm{LL}^{2}}, \mathrm{~S}_{\mathrm{L}_{1}}, \mathrm{Q}_{\mathrm{L} 1}, \mathrm{PF}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{L}-\mathrm{N}}, \mathrm{~A}_{\mathrm{L} 1}, \\ & \mathrm{P}_{\mathrm{L} 2}, \mathrm{~S}_{\mathrm{L} 2}, \mathrm{Q}_{\mathrm{L}}, \mathrm{PF}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{L}-\mathrm{N}}, \mathrm{~A}_{\mathrm{L} 2}, \end{aligned}$
	$P_{L 3}, S_{L 3}, Q_{L 3}, P_{L 3}, V_{L 3-N}, A_{L 3}$
Static (writing only)	All programming data, reset
	of energy, reset of energy
	overflow bit, activation of
	static output.
	Stored energy (EEPROM)
Data format	
Data format	parity/even parity, 1 stop bit
Baud-rate	1200, 2400, 4800 and 9600
	selectable bauds
Insulation	By means of optocouplers,
	$4000 \mathrm{~V}_{\text {ms }}$ output to
	$4000 \mathrm{~V}_{\text {rms }}$ output to supply input
Temperature drift	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RS 232 port (on request)	bidirectional (static and
	dynamic variables)
	3 wires, max. distance 15 m
Data format	1-start bit, 8-data bit,
	no parity, 1 stop bit
Baud-rate	9600 bauds
Protocol	MODBUS (JBUS)
Other data	as for RS422/485

Pulse output (on request)	
Number of outputs	1, independent
Type	From 1 to 999 programmable pulses for kWh, KVAh,
	KVArh, MWh, MVAh,
	MVArh,
	open collector (NPN transistor)
	$\mathrm{V}_{\text {ON }} 1.2 \mathrm{VDC/}$ max. 100 mA
	Voff 30 VDC max. according to DIN43864
Pulse duration	20 ms (ON), $\geq 20 \mathrm{~ms}$ (OFF)
Insulation	By means of optocouplers,
	$4000 \mathrm{~V}_{\text {ms }}$ output to
	measuring input,
	$4000 \mathrm{~V}_{\text {ms }}$ output to
	supply input.
Alarms (on request)	
Number of setpoints	1, independent
Alarm type	Up alarm, down alarm
Setpoint adjustment	0 to 100\% of the electrical scale
Hysteresis	0 to 100\% of the electrical
	scale
On-time delay	0 to 255 s
Relay status	Normally de-energized
Output type	Relay, SPDT
	AC 1-8A @ 250VAC
	DC 12-5A @ 24VDC
	AC 15-2.5@ 250VAC
	DC 13-2.5 @ 24VDC
Response time	typ. 250 ms , filter excluded,
	setpoint on-time delay: "0"
Insulation	$4000 \mathrm{~V}_{\text {rms }}$ output to
	measuring input,
	$4000 \mathrm{~V}_{\text {rms }}$ output to
	supply input

Software Functions

Password

1st level
2nd level

Measurement selection

Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 499, all data are protected
System's active power (W), system's apparent power (VA), system's reactive power (VAr), average active power (Wavg), integration time programmable from 1 to 30 minutes, system's power factor ($\cos \varphi$), maximum current (A max), average phase-phase voltage, phase-neutral voltagephase 1, phase-neutral vol-tage-phase 2, phase-neutral voltage-phase 3 , frequencyphase 1.
System's (+) active energy, system's apparent energy,

Measurement selection (cont.)	system's reactive energy, system's (+/-) active energy
Transformer ratio	For CT up to 5000 A, For VT up to $100 \mathrm{kV}(1 \mathrm{MV})$
Scaling factor Operating mode	Electrical scale: compression/ expansion of the input scale to be connected to 1 or 2 ana- logue outputs and to the alarm output. Programmable within the whole measuring range
Electrical range	0 to 99.9% of the input electrical scale 1 to 255
Filter	Both analogue and serial outputs (fundamental vari- ables: $\mathrm{V}, \mathrm{A}, \mathrm{W}$ and their derived ones)
Filtering coefficient	Filter action

Function Description

Input and output scaling capability
Working of the analogue outputs (y) versus input variables (x)

Figure A

The sign of measured quantity and output quantity remains the same. The output quantity is proportional to the measured quantity.

Figure B
The sign of measured quantity and output quantity changes simultaneously. The output quantity is proportional to the measured quantity.

Figure C

The sign of measured quantity and output quantity remains the same. On the range $\mathrm{XO} 0 . . \mathrm{X} 1$, the output quantity is zero. The range $\mathrm{X} 1 \ldots \mathrm{X} 2$ is delineated on the entire output range $\mathrm{YO}=$ $\mathrm{Y} 1 \ldots \mathrm{Y} 2$ and thus presented in strongly expanded form.

Figure D

The sign of measured quantity and output quantity remains the same. With the measured quantity being zero, the output quantity already has the value $\mathrm{Y} 1=0.2 \mathrm{Y} 2$.
Live zero output.

Figure E
The sign of the measured quantity changes but that of the output quantity remains the same. The output quantity steadily increases from value X 1 to value X 2 of the measured quantity.

Figure F

The sign of the measured quantity remains the same, that of the output quantity changes as the measured quantity leaves range XOX1 and passes to range $\mathrm{X} 1 . . . \mathrm{X} 2$ and vice versa.

General Specifications

Operating temperature	0 to $+50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (R.H. $<90 \%$ non-condensing)
Storage temperature	-10 to $+60^{\circ} \mathrm{C}\left(14\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ (R.H. $<90 \%$ non-condensing)
Insulation reference voltage	$300 \mathrm{~V}_{\text {ms }}$ to ground
Insulation	$4000 \mathrm{~V}_{\text {ms }}$ between all inputs/ outputs to ground
Dielectric strength	$4000 \mathrm{~V}_{\mathrm{ms}}$ for 1 minute
Noise rejection CMRR	$100 \mathrm{~dB}, 48$ to 62 Hz
EMC	EN $50081-2, \mathrm{EN} \mathrm{50082-2}$
Other standards Safety requirements:	IEC $61010-1, \mathrm{EN} \mathrm{61010-1}$

\(\left.$$
\begin{array}{ll}\hline \begin{array}{l}\text { Product requirements: } \\
\text { Pulse output: }\end{array} & \text { IEC 60688-1, EN 60688-1 } \\
\hline \text { DIN 43864 }\end{array}
$$, $$
\begin{array}{ll}\text { CE } \\
\text { UL, CSA }\end{array}
$$ \left\lvert\, \begin{array}{ll}Screw-type,

max. 2.5 \mathrm{~mm}^{2} wires \times 2\end{array}\right.\right]\)| Connector | $90 \times 90 \times 140 \mathrm{~mm}$
 ABS,
 self-extinguishing: UL 94 V-0 |
| :--- | :--- |
| Housing
 Dimensions
 Material | IP20 |
| Degree of protection | Approx. 550 g
 (packing included) |
| Weight | |

Supply Specifications

AC voltage	90 to $260 \mathrm{VAC} / \mathrm{DC}$ (standard),
	$50 / 60 \mathrm{~Hz}$
	18 to $60 \mathrm{VAC} / \mathrm{DC}, 50 / 60 \mathrm{~Hz}$
	(on request),

The available modules

Type	N. of channels	Ordering code	Note
SPT-90 base + AV1.1 input		AA1000	
SPT-90 base + AV3.1 input		AA1001	
SPT-90 base + AV4.1 input		AA1002	
SPT-90 base + AV5.1 input		AA1003	
SPT-90 base + AV7.1 input		AA1004	
SPT-90 base + AV1.3 input		AA1006	
SPT-90 base + AV3.3 input		AA1007	
SPT-90 base + AV4.3 input		AA1008	
SPT-90 base + AV5.3 input		AA1009	
SPT-90 base + AV7.3 input		AA1010	
18-60VAC/DC power supply		AP1021	
90-260VAC/DC power supply		AP1020	
Programming unit		AR1017	The same unit can be used in several SPT's
20mADC analogue output	1	AO1050	
10VDC analogue output	1	AO1051	
$\pm 5 \mathrm{mADC}$ analogue output	1	AO1052	
$\pm 10 \mathrm{mADC}$ analogue output	1	AO1053	
$\pm 20 \mathrm{mADC}$ analogue output	1	AO1054	
$\pm 1 \mathrm{VDC}$ analogue output	1	AO1055	
$\pm 5 \mathrm{VDC}$ analogue output	1	AO1056	
$\pm 10 \mathrm{VDC}$ analogue output	1	AO1057	
20 mADC analogue output	2	AO1026	SPT can be equipped also with 2 dual analogue
10VDC analogue output	2	A01027	outputs, in this case the third or fourth output can
$\pm 5 \mathrm{mADC}$ analogue output	2	AO1028	be used as a redundant output of the second one
$\pm 10 \mathrm{mADC}$ analogue output	2	A01029	
$\pm 20 \mathrm{mADC}$ analogue output	2	AO1030	
$\pm 1 \mathrm{VDC}$ analogue output	2	AO1031	
$\pm 5 \mathrm{VDC}$ analogue output	2	AO1032	
$\pm 10 \mathrm{VDC}$ analogue output	2	AO1033	
RS485 port	1	AR1034	
Relay output	1	AO1058	
Relay output	2	AO1035	The second output can be used as redundant output
Open collector output	1	AO1059	
Open collector output	2	AO1036	The second output can be used as redundant output
Digital inputs	3	AQ1038	
RS232 port + RTC	1	AR1039	The RS232 module works as alternative of the RS485 module. The RTC (real time clock) function is not available in the SPT

The possible combinations

Slot	A	B	C	D	E
Basic unit	Out 1	Out 2	Out 3	Out 4	PU
Single analogue output (2)	\bullet	\bullet			
Dual analogue output (2)	\bullet				
RS485 port (1)		\bullet			
Single relay output (alarm)			\bullet	\bullet	
Single open coll. output (pulse)			\bullet	\bullet	
Dual relay output (alarm)			\bullet	\bullet	
Dual open coll. output (pulse)			\bullet	\bullet	
3 digital inputs (2)			$\bullet(*)$		
RS232 port (1)					\bullet
Programming unit					\bullet

Notes:
PU is the programming unit
(1) The RS232 module works as alternative of the RS485 module.
(2) (*) Digital inputs and analogue outputs can't work together in the same instrument.

Mode of Operation

Accuracy class of the meter

 as a relation of $P_{/} / P_{N}$ and $\cos \varphi$ (power factor)

Input	Star voltage	Delta voltage	Current
AV1	Un: $100 \mathrm{~V} / \sqrt{ } 3$	Un: 100 V	In: 1 A
AV3	Un: $100 \mathrm{~V} / \sqrt{ } 3$	Un: 100 V	In: 5 A
AV4	Un: 250 V	Un: 430 V	In: 1 A
AV5	Un: 250 V	Un: 430 V	In: 5 A

P:: (installation power)

One phase system:

$$
\mathrm{P}_{\mathrm{I}}=\mathrm{U}_{\mathrm{l}} \cdot \mathrm{I}_{1} \cdot \cos \varphi
$$

Three phase, 3 -wire system:

$$
P_{1}=\sqrt{3} \cdot U_{1} \cdot I_{1} \cdot \cos \varphi
$$

Three phase, 4-wire system:

$$
\mathrm{P}_{\mathrm{l}}=3 \cdot \mathrm{U}_{\mathrm{I}} \cdot \mathrm{I}_{\mathrm{t}} \cdot \cos \varphi
$$

where:

$\mathrm{U}_{1}=$ the real star voltage of the electrical system being measured.
$\mathrm{I}_{1}=$ the maximum phase current of the electrical system being measured.
$\operatorname{Cos} \varphi=$ the average $\cos \varphi$ of the electrical system being measured.
\mathbf{P}_{n} : (rated power of transducer) One phase system:

$$
\mathrm{P}_{\mathrm{n}}=\mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{VT}(\text { ratio }) \cdot \mathrm{CT}(\text { ratio })
$$

Three phase, 3-wire system:

$$
P_{n}=\sqrt{3} \cdot \mathrm{U}_{n} \cdot \mathrm{I}_{n} \cdot V T \text { (ratio) } \cdot \mathrm{CT} \text { (ratio) }
$$

Three phase, 4-wire system:

$$
\mathrm{P}_{\mathrm{n}}=3 \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}} \cdot \mathrm{VT}(\text { ratio }) \cdot \mathrm{CT}(\text { ratio })
$$

where:
$\mathrm{U}_{\mathrm{s}}=$ the rated input voltage of SPT-90 depending on the model, see table above.
$\mathrm{I}_{\mathrm{s}}=$ the rated input current of SPT-90 depending on the model, see table above.
VT (ratio) $=$ the value of the voltage transformer ratio. $C T$ (ratio) $=$ the value of the current transformer ratio.

Example 1:

Model AV3. 3 (3-wire system).
$\mathrm{U}_{\mathrm{t}}=6 \mathrm{kV}$ (delta voltage)
$\mathrm{I}_{\mathrm{i}}=265 \mathrm{~A}$ (single phase current)
$\operatorname{Cos} \varphi=0.85$ (system power factor)

$$
\mathrm{U}_{\mathrm{n}}=100 \mathrm{~V}
$$

$\mathrm{I}_{\mathrm{n}}=5 \mathrm{~A}$
$\mathrm{VT}($ ratio $)=\frac{6 \mathrm{kV}}{100}=60$
CT (ratio) $=\frac{300}{5}=60$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{I}} & =\sqrt{ } 3 \cdot \mathrm{U}_{1} \cdot \mathrm{I}_{1} \cdot \cos \varphi \\
& =\sqrt{3} \cdot 6000 \cdot 265 \cdot 0.85 \\
& =2.33 \mathrm{MW} \\
\mathrm{P}_{\mathrm{n}} & =\sqrt{ } 3 \cdot \mathrm{U}_{\mathrm{a}} \cdot \mathrm{I} \cdot \mathrm{VT}(\text { ratio }) \cdot \mathrm{CT}(\text { ratio) } \\
& =\sqrt{3} \cdot 100 \cdot 5 \cdot 60 \cdot 60 \\
& =3.12 \mathrm{MW}
\end{aligned}
$$

$\frac{P_{1}}{P_{\mathrm{t}}}=\frac{2.33}{3.12}=0.75$

Trends of the " E " error depending on the S_{R} scale ratio

Example 2:

Model AV3.3 (4-wire system).

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{I}}=6 \mathrm{kV} / \sqrt{ } 3 \\
& \mathrm{I}_{\mathrm{I}}=265 \mathrm{~A} \\
& \operatorname{Cos} \varphi=0.85 \\
& \mathrm{U}_{\mathrm{n}}=100 \mathrm{~V} / \sqrt{ } 3 \\
& \mathrm{I}_{\mathrm{n}}=5 \mathrm{~A} \\
& \mathrm{VT}(\text { ratio })=\frac{6 \mathrm{kV} / \sqrt{ } 3}{100 / \sqrt{3}}=60 \\
& \mathrm{CT}(\text { ratio })=\frac{300 \mathrm{~A}}{5 \mathrm{~A}}=60 \\
& \mathrm{P}_{\mathrm{i}}=3 \cdot \mathrm{U}_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{I}} \cdot \cos \varphi \\
& =3 \cdot 6000 / \sqrt{ } 3 \cdot 265 \cdot 0.85 \\
& =2.33 \mathrm{MW} \\
& \mathrm{P}_{\mathrm{n}}=3 \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{n} \cdot \mathrm{VT} \text { (ratio) } \cdot \mathrm{CT} \text { (ratio) } \\
& =3 \cdot 100 / \sqrt{ } 3 \cdot 5 \cdot 60 \cdot 60 \\
& =3.12 \mathrm{MW} \\
& \frac{\mathrm{P}_{\mathrm{t}}}{\mathrm{P}_{\mathrm{n}}}=\frac{2.33}{3.12}=0.75
\end{aligned}
$$

In both examples the accuracy of the measurement is 0.5% f.s. when considering the changing of the measured voltage from 0.9 Un to 1.1 Un and the measured current from 0.6 In to 1 ln with a $\cos \varphi$ of 0.85. The accuracy of the output is connected to the accuracy of the measurement plus the scale ratio of both input (Hi.E - Lo.E) and output (Hi.A - Lo.A) as shown in the graph above ($\mathrm{E} \%$ versus S_{R}).

Regarding \mathbf{S}_{R} :

$$
\mathrm{S}_{\mathrm{k}}=\frac{\text { AFS } \cdot(\text { Hi.A }- \text { Lo.A })}{100 \cdot(\text { Hi.E }- \text { Lo.E })} \leq 1.25
$$

AFS = automatic electrical full scale calculated value.
$S_{\mathrm{k}}=$ scale ratio.
There is not any additional error on the output signal if $\mathrm{S}_{\mathrm{k}} \leq 1.25$.

Example 3:

$\mathrm{AFS}=3.30 \mathrm{MW}$
Lo. $\mathrm{E}=0 \mathrm{MW}$
$\mathrm{Hi} . \mathrm{E}=3.30 \mathrm{MW}$
Lo. $\mathrm{A}=20 \%$
Hi.A $=99.9 \%$
$\mathrm{S}_{\mathrm{R}}=\frac{3.30(99.9-20)}{100(3.30-0)}=0.8$
$0.8 \leq 1.25$ no additonal errors

Example 4:

$\mathrm{AFS}=3.30 \mathrm{MW}$
Lo. $\mathrm{E}=1.00 \mathrm{MW}$
$\mathrm{Hi} . \mathrm{E}=3.30 \mathrm{MW}$
Lo. $\mathrm{A}=20 \%$
Hi. $\mathrm{A}=99.9 \%$
$\mathrm{S}_{\mathrm{k}}=\frac{3.30(99.9-20)}{100(3-1)}=1.32$
$1.32 \geq 1.25$ means that there is an additional error of 0.2% f.s. according to the graph at the previous page.

Mode of Operation (cont.)

Waveform of the signals that can be measured

Figure G
Sine wave, undistorted
Fundamental content
Harmonic content
$\mathrm{A}_{\mathrm{rms}}=$
$1.1107|\overline{\mathrm{~A}}|$

Figure H
Sine wave, indented
Fundamental content
10...100\%

Harmonic content
0...90\%

Frequency spectrum 3rd to 16th harmonic
Required result: additional error < 1\%

Figure I
Sine wave, distorted
Fundamental content 70...90\%
Harmonic content
10...30\%

Frequency spectrum 3rd to 15th harmonic Required result: additional error $<0.5 \%$

Wiring Diagrams

Single phase input connections

Three-phase, 3-wire input connections - Balanced loads

Wiring Diagrams (cont.)

Three-phase, 3-wire input connections - Balanced loads

Three-phase three-wire input connections - Unbalanced load

Three-phase three-wire input connections

 Unbalanced load

Three-phase four-wire input connections - Unbalanced load

CARLO GAVAZZI

Front Panel Description

1. Key-pad

Set-up and programming procedures are easily controlled by the 3 pushbuttons.
"S"

- Selection key to select programming function (transducer configuration) and alarm detection.
" \boldsymbol{A} " and " ${ }^{-}$
- Up and down keys for increasing or decreasing programming values.
- Selecting programming functions and transducer configuration together with the "S" key.

2. Display

3 -digit (maximum read-out 999).
Alphanumeric indication by means of 7 -segment display for:

- Displaying only the configuration parameters

Dimensions

$\square 90 \mathrm{~mm}$

138 mm

Terminal boards

Single analogue output modules

Digital output modules

A01058
Single relay output

Other input/output modules

AQ1038
3 Digital inputs

AR1034 RS485 port

Dual analogue output modules

AO1026	$(20 \mathrm{mADC})$
AO1027	(10VDC)
AO1028	$(\pm 5 \mathrm{mADC})$
AO1029	$(\pm 10 \mathrm{mADC})$
AO1030	$(\pm 20 \mathrm{mADC})$
AO1031	$(\pm 1 \mathrm{VDC})$
AO1032	$(\pm 5 \mathrm{VDC})$
AO1033	$(\pm 10 \mathrm{VDC})$

A01059
Single open collector output

Power supply modules

AP1021 18-60VAC/DC power supply

AP1020 90-260 VAC/DC power supply

